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Summary: The first total synthesis of (+)-hanegokedial (A), one of a large class 
of seco-aromadendrane natural products is reported. 

A large and growing class of seco-aromadendrane sesquiterpenes have been 

isolated recently from extracts of various species of liverwort (Hepaticae).2 

Many members of this class exhibit potent plant growth inhibitory properties and/or 

insect antifeedent activity.3 Two representative examples are (+)-hanegokedial 

(1)2a and (+)-ovalifoliene (2).2a - Recently we reported the preparation, in both - 

racemic and chiral forms, of bicyclic enone 3, which we proposed to be a versa- - 
tile intermediate for the synthesis of the seco-aromadendranes and other natural 

products containing the bicyclo[5.l.O]octane substructure.4 Herein we illustrate 

the utilility of (-)-3 for the synthesis of (+)-hanegokedial (1) via a short, - _ 
five-step sequence. 

OAc 

$&CHO H@oAc 6 

(1) (21 (3) 

We envisioned the synthesis of 1 to proceed via runrate addition of a three - 
carbon unit to the B-carbon of 3. - Such an addition was anticipated to proceed 

from the a-face due to the steric bias provided by the geminal methyl substi- 

tuents on the cyclopropane ring. Introduction of the one-carbon unit at C(L) via 

capture of the resultant enalate with formaldehyde would then provide all 

carbons except the exo-methylene group at C(1). The stereochemical outcome 

of the latter step was less obvious. In fact, formation of a mixture of alcohols 

at C(2) appeared reasonable. Nonetheless, it was anticipated that epimerization 

at this center could be accomplished at a later stage if necessary. 

In the event, treatment of (-)-3 with bis(l,l-diethoxy-2-propenyl) lithium - 
cuprate in ether followed by reaction of the resultant enolate with gaseous, 
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monomeric formaldehyde produced two isomeric alcohols 46 and 56 in a ratio of 2:l - - 

(84%). The stereochemistry of 4 and 5 was assigned after conversion to 11 and 

l, respectively ($de infra). Unfortunately, all attempts to epimerize the 

major alcohol (4) were unsuccessful. For example, mild acidic conditions led 

to acetal hydrolysis with little further change, while basic conditions, such as 

potassium t-butoxide in ether resulted in recovery of 4. - 

(4) R' = H, R2 = CH,OH, X = 0 (11) R’ = H, R2 = CHO (14) 

(5) R’ = CH,OH, R2 = H, X = 0 (1) R’ = CHO, R2 = H 

(6) R’ = H, R2 = CH,OAc, X = 0 

(7) R’ = H, R2 = CH,OH, X = CH, 

(8) R’ = CH,OH, R2 = H, X = CH, 

(9) R’ = H, R2 = CHO, X = CH, 

(10) R’ = CHO, R2 = H, X = CH, 

(12) R' = R2= H,X=CH, 

(13) R' = R2= H,X= 0 

At this juncture the only alternative was to carry both 4 and 2 through 

the remainder of the synthesis. Towards this end the major alcohol (Q) was 

found to react sluggishly with triphenylphoshine methylide in THF to give a low 

yield (~10%) of olefin 16; in DMS07 the product isolated was 12, the result 

of a retro-aldol process. The same product (12) was also obtained from reaction - 

of 13 with triphenylphosphine methylide (THF, O", 97%). - 

Reasonable amounts of 1, however, could be obtained by first protecting the 

alcohol as the acetate 66a (Ac20, pyr, 93%). That is, reaction of 6 with tri- - - 

phenylphosphine methylide in THF at room temperature and then briefly at reflux, 

produced 7 in 62% yield. Oxidation of the alcohol to aldehyde _ 96 (Collins,S - 

56%) and hydrolysis of the acetal (acetone-water, oxalic acid, 82%) produced 

epihanegokedial 116. The 250 MHz NMR spectrum of 11 differed significantly from - - 

that of the natural product9 and thus was easily distinguished. All attempts to 

epimerize 9 or 11 were also unsuccessful. Mild acidic conditions converted 9 to - - - 

11 which did not change further. More rigorous conditions such as mineral acids - 
destroyed the material. On the other hand treatment of 2 with amine bases or a 

trace of potassium t-butoxide caused rapid isomerization of the exocyclic double 

bond into conjugation with the aldehyde functionality to yield 146a, the latter - 

deduced from the 250 MHZ NMR spectrum which exhibited only two olefinic reso- 

nances and a three proton singlet at 62.12. 
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The minor alcohol (2) upon reaction with triphenylphosphine methylide pro- 

duced the olefin 86 (THF, 0-25O, 42%). Oxidation with Collin's reagent9 and hyd- - 

rolysis of the acetal led respectively to lo6 (88%) and 1 (97%). The resultant - 

product exhibited IR and NMR spectra identical to those of the natural product.g 

The optical rotation observed for synthetic 1 was +0.5O (C = 0.8, CHC13). The - 

latter differed considerably from that reported for the natural material 

([al, -10.4°).2a'1n Nonetheless the NMR spectra of 1 and 5 in the presence 

of a chiral shift reagent11 were consistent with the enantiomeric purity of the 

synthetic product. 

Finally, several experiments were carried out to convert 1 to 2. In - - 

each case however, treatment under a variety of conditions (e.g. AcOH: Ac20; 

4~~0, H+; etc.) led to recovery of the starting material or its destruction. 
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(C~c13): 2980(s), 2930 (s), 2880 (s), 1680 (ml, 1470 (m), 1390 (ml, 1130 
(m), 1080 (s) cm-l. 
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J = 10.3 HZ, lH), 2.37 (m, 2H), 1.87 (m, la), 1.6-1.35 (camp m, lH), 1.04 
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(s, 3H); IR 3020 (m,) 2980 (m), 2940 (SO, 2865 (ml, 2825 (In), 2725 (w), 
1720 (s), 1690 (s), 1145 (s), 970 (m), 925 (m) cm-l; 
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